A lightweight Δ-Attribution suite for auditing model updates (A→B) with behavioural linkage and robustness checks.
Delta-Audit provides a comprehensive suite of Δ-Attribution metrics to understand how model explanations change when models are updated. It implements behavioural alignment, conservation error, and stability measures to audit model updates across different algorithms and datasets.
# Install in a virtual environment
python3 -m venv .venv && source .venv/bin/activate
pip install -e . && pip install -r requirements.txt
# Run a quick demonstration (5 minutes)
delta-audit quickstart
# Run the full benchmark (45 experiments)
delta-audit run --config configs/full_benchmark.yaml
# Generate figures from results
delta-audit figures --summary delta_attr_run/results/_summary --out figures/
# Run sanity checks
delta-audit check
delta-audit/
├── src/delta_audit/ # Main package
│ ├── metrics.py # Δ-Attribution metrics implementation
│ ├── explainers.py # Attribution computation methods
│ ├── runners.py # Training and evaluation pipelines
│ ├── plotting.py # Figure generation utilities
│ ├── io.py # Data loading and saving
│ └── cli.py # Command-line interface
├── configs/ # Configuration files
│ ├── quickstart.yaml # Quick demonstration config
│ └── full_benchmark.yaml # Full benchmark config
├── delta_attr_run/ # Original experiment structure
│ ├── code/ # Original scripts (for reproducibility)
│ └── results/ # Results and figures
├── paper/ # Research paper
│ └── ICCKE_delta.pdf # NOT AVAILABLE NOW!
├── docs/ # Documentation website
└── .github/ # GitHub workflows and templates
To reproduce all results and figures from the paper:
# 1. Install dependencies
pip install -e . && pip install -r requirements.txt
# 2. Run the full benchmark (reproduces all 45 experiments)
delta-audit run --config configs/full_benchmark.yaml
# 3. Generate all figures
delta-audit figures --summary delta_attr_run/results/_summary --out delta_attr_run/results/figures/
# 4. Check results
delta-audit check
The results will be saved in delta_attr_run/results/
with the same structure as in the paper.
Delta-Audit implements the following metrics:
See the documentation website for detailed guides:
If you use Delta-Audit in your research, please cite (Will be available soon!):
@article{hemmat2025delta,
title={Delta-Audit: Explaining What Changes When Models Change},
author={Hemmat, Arshia},
journal={arXiv preprint},
year={2025}
}
This project is licensed under the MIT License - see the LICENSE file for details.
Thanks to the open-source community for the excellent tools that made this project possible, particularly scikit-learn, matplotlib, and pandas.